CBD and the Brain: What Does It Do and What is It Good For?

Posted on 29 November 2016

Cannabidiol (CBD) is one of many cannabinoid molecules produced by Cannabis, second only to THC in abundance. These plant-derived cannabinoids, or phytocannabinoids (phyto = plant in Greek), are characterized by their ability to act on the cannabinoid receptors that are part of our endocannabinoid system. While THC is the principal psychoactive component of Cannabis and has certain medical uses, CBD stands out because it is both non-psychoactive and displays a broad range of potential medical applications. These properties make it especially attractive as a therapeutic agent.

  

Evaluating the evidence

Perhaps the most remarkable thing about CBD is the sheer number and variety of its potential therapeutic applications. It is important to recognize that each application may be supported by different levels of evidence. These range from ongoing clinical trials evaluating its efficacy in the treatment of human disorders, to animal studies investigating its behavioral and physiological effects, to in vitro work (test tube experiments) measuring its pharmacological interactions and mechanisms of action. Each type of study comes with its own strengths and weaknesses.

Clinical trials allow us to draw conclusions about the safety and effectiveness of potential therapeutic agents in humans, while animal studies and in vitroexperiments allow researchers to explore their biological actions in greater detail. However, because the latter class of studies are not conducted in humans, the results don’t always lead to the clinical application that we hope for—the majority of drugs that start in human clinical trials never become approved. Nonetheless, animal studies provide us with a strong foundation of biological knowledge, and are where the initial breakthroughs in research are made.

Why does CBD have so much therapeutic potential?

CBD is famous for the promise it holds for treating treatment-resistant forms of childhood epilepsy. A number of clinical trials, testing the efficacy of CBD in human epilepsy patients, are currently underway. But there is also evidence, mainly from animal studies and in vitro experiments, that CBD may have neuroprotective, anti-inflammatory and analgesic (pain-relieving) properties, and potential therapeutic value in the treatment of motivational disorders like depression, anxiety, and addiction.

What’s the biological basis for this wide range of potential medical uses? A key part of the answer lies in CBD’s promiscuous pharmacology—its ability to influence a wide range of receptor systems in the brain and body, including not only cannabinoid receptors but a host of others. 

Receptor systems in the brain

The brain contains large numbers of highly specialized cells called neurons. Each neuron connects to many others through structures called synapses. These are sites where one neuron communicates to another by releasing chemical messengers known as neurotransmitters (Figure 1).

A neuron’s sensitivity to a specific neurotransmitter depends on whether or not it contains a receptor that “fits” that transmitter, like an electrical socket fits a plug. If a neuron contains receptors that match a particular neurotransmitter, then it can respond directly to that transmitter. Otherwise, it generally can’t. All neurons contain multiple neurotransmitter receptors, allowing them to respond to some neurotransmitters but not others.

 

how neurons in the brain communicate
Figure 1 — Neurons Communicate Using Neurotransmitters
Right: The brain contains a huge a number of brain cells (neurons). Each neuron, represented here as a hexagon, is connected to many others. Left: The synapse is the site where two neurons communicate with each other. The “sender neuron” releases chemical signals called neurotransmitters, which stimulate receptors on the “receiver neuron.” There are many different receptor types in the brain, each one sensitive to different neurotransmitters.

Brain receptors are not only sensitive to neurotransmitters produced naturally within the brain, like dopamine or serotonin, but also chemical messengers produced outside the body, such as plant cannabinoids like THC or CBD. So when you ingest an edible or inhale some vapor, you’re allowing compounds originally produced by a plant to enter your body, travel through your bloodstream, and enter your brain. Once they arrive, these plant-derived compounds can influence brain activity by interacting with receptors on neurons. But they don’t interact with all neurons, just the ones that have the appropriate receptors.

For full article please visit: https://www.leafly.com/news/science-tech/what-does-cbd-do

By: Nick Jikomes @leafly

More Posts

0 comments

Leave a comment

All blog comments are checked prior to publishing

Join our Mailing List

Sign up to receive our email updates

Search our store